Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Endocr Regul ; 57(1): 53-60, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2281880

ABSTRACT

Objective. Nowadays, type 2 diabetes mellitus (T2D) is the most common chronic endocrine disorder affecting an estimated 5-10% of adults worldwide, and this disease also rapidly increased among the population in the Kurdistan region. This research aims to identify DNA methylation change in the TCF7L2 gene as a possible predictive T2D biomarker. Methods. One hundred and thirteen participants were divided into three groups: diabetic (47), prediabetic (36), and control (30). The study was carried out in patients who visited the private clinical sector between August and December 2021 in Koya city (Iraq Kurdistan region) to determine DNA methylation status using a methylation-specific PCR (MSP) with paired primers for each methylated and non-methylated region. In addition, the X2 Kruskal-Wallis statistical and Wilcoxon signed-rank tests were used, p<0.05 was considered significant. Results. The results showed hypermethylation of DNA in the promoter region in diabetic and prediabetic groups compared to the healthy controls. Different factors affected the DNA methylation level, including body max index, alcohol consumption, family history, and physical activity with the positive Coronavirus. Conclusion. The results obtained indicate that DNA methylation changes in the TCF7L2 promoter region may be used as a potential predictive biomarker of the T2D diagnosis. However, the findings obtained in this study should be supported by additional data.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Adult , Humans , DNA Methylation/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Prediabetic State/diagnosis , Prediabetic State/genetics , Iraq , Promoter Regions, Genetic/genetics , Polymerase Chain Reaction/methods , Biomarkers , Transcription Factor 7-Like 2 Protein/genetics
2.
Cancer Research ; 82(12), 2022.
Article in English | EMBASE | ID: covidwho-1986493

ABSTRACT

Angiotensin converting enzyme II (ACE2) is the cellular receptor of SARS-CoV-2. At present, ACE2 receptor is considered to be the key component in the SARS-CoV-2 infection and transmitting in the host. Among the cancer patients with COVID-19, the gastrointestinal cancer is the second most prevalent. The MethyLight and QASM assays were used to evaluated the genomic DNA 5mC methylation, while the CviAII enzyme-based 6mA-RE-qPCR was applied to determine motif-specific DNA 6mA methylation. The 6mA and 5mC methylation analyses of the long interspersed nuclear elements 1 (LINE1) were used to evaluate the global level of genomic 6mA and 5mC methylations, respectively. To investigate the role of ACE2 DNA methylation in regulating ACE2 expression, we performed a genome-wide methylation analysis in colorectal cancer samples collected at the Sixth Affiliated Hospital of Sun Yat-sen University. The DNA 5mC methylation of ACE2 promoter in tumor tissues were significantly lower than that in normal tissues, while the DNA 6mA methylation of ACE2 promoter in tumor tissues was significantly higher than that in normal tissues. In addition, the mRNA and protein expression of ACE2 in tumor tissues were lower than that in normal tissues. To explore the epigenetic regulation on ACE2 expression, we treated colon cancer cell lines with 5-Azacytidine and found ACE2 expression was upregulated after lowering the DNA 5mC methylation. The correlation analysis in patient cohort samples showed that ACE2 mRNA expression was positively correlated with DNA 5mC and negatively associated with DNA 6mA methylation. Next, a novel CRISPR-based tool was developed for sequence-specific 6mA editing on ACE2 promoter region, and it was applied in HCT116 cell to further confirm the regulatory role of DNA 6mA methylation in ACE2 mRNA expression. This tool was proved to be reliable with our findings that the CRISPR/dCas9-METTL3 tool could dramatically upregulate DNA 6mA methylation in ACE2 promoter, while the global level of genomic 6mA methylation remained unchanged. Both the mRNA and protein expression of ACE2 were significantly increased following a sequence-specific DNA 6mA editing in ACE2 promoter. In conclusion, we revealed the aberrant DNA 5mC and 6mA methylations in colorectal cancer, which upregulate ACE2 expression in colorectal cancer cells that may confer the susceptibility to SARS-CoV-2 infection. We developed a novel CRISPR-based tool that could realize site-directed 6mA methylation editing. Notably, the epigenetic regulation of DNA 6mA methylation on ACE2 expression provides an insight into the intersection of the biology of cancer, SARS-CoV-2 infection and organ-specific complication in COVID-19. Aberrant ACE2 methylation may serve as a biomarker and treatment target in these patients.

SELECTION OF CITATIONS
SEARCH DETAIL